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Abstract

Cinnamoyl-CoA reductase (CCR), which catalyses the first committed step of the lignin-specific branch of
monolignol biosynthesis, has been extensively characterized in dicot species, but few data are available in

monocots. By screening a Mu insertional mutant collection in maize, a mutant in the CCR1 gene was isolated named

Zmccr1–. In this mutant, CCR1 gene expression is reduced to 31% of the residual wild-type level. Zmccr1– exhibited

enhanced digestibility without compromising plant growth and development. Lignin analysis revealed a slight

decrease in lignin content and significant changes in lignin structure. p-Hydroxyphenyl units were strongly

decreased and the syringyl/guaiacyl ratio was slightly increased. At the cellular level, alterations in lignin deposition

were mainly observed in the walls of the sclerenchymatic fibre cells surrounding the vascular bundles. These cell

walls showed little to no staining with phloroglucinol. These histochemical changes were accompanied by an
increase in sclerenchyma surface area and an alteration in cell shape. In keeping with this cell type-specific

phenotype, transcriptomics performed at an early stage of plant development revealed the down-regulation of genes

specifically associated with fibre wall formation. To the present authors’ knowledge, this is the first functional

characterization of CCR1 in a grass species.
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Introduction

Lignin biosynthesis has received growing attention in

the cell wall field because lignin is a limiting factor in
a number of agro-industrial processes such as pulping,

forage digestibility, and lignocellulosic-to-bioethanol con-

version processes. Cinnamoyl-CoA reductase (CCR) is the

entry point for the lignin-specific branch of the phenyl-

propanoid pathway and is considered to be a key enzyme
controlling the quantity and quality of lignins (Piquemal

et al., 1998; Jones et al., 2001; Goujon et al., 2003;

Kawasaki et al., 2006; Leple et al., 2007; Wadenback et al.,

Abbreviations: CCR, cinnamoyl-CoA reductase; C3H, p-coumaroyl ester 3-hydroxylase; DFR, dihydroflavonol reductase; G, guaiacyl; H, p-hydroxyphenyl; QTL,
quantitative trait locus; S, syringyl.
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2008; Zhou et al., 2010). However, most of the functional

analysis of CCR has been performed on non-grass species.

The first transgenic plants with down-regulated CCR

activity were obtained in tobacco (Piquemal et al., 1998)

using an antisense strategy. Lignin content was decreased to

50% of the wild type in transgenic lines exhibiting severe

reduction of CCR activity. This dramatic lignin decrease

provoked deleterious effects on plant development including
stunting and collapsed xylem vessels. Molecular pheno-

typing demonstrated that decreasing CCR expression in

tobacco affected not only cell wall synthesis, but also

other metabolic processes such as photorespiration and

photo-oxidative stress (Dauwe et al., 2007). In CCR

down-regulated poplar, transcript and metabolite profiling

suggested that, in addition to altered lignification, CCR

deficiency resulted in a decrease in hemicellulose and pectin
biosynthesis (Leple et al., 2007).

Many data concerning the role of CCR1 have

been obtained in Arabidopsis. The first CCR mutant in

Arabidopsis was identified based on its collapsed xylem

phenotype (Jones et al., 2001) and named irx4 (for irregular

xylem 4). Irx4 exhibits a strong decrease in lignin content

(50%) associated with a severe defect in secondary cell wall

formation. Its interfascicular fibres are characterized by an
expanded cell wall in the interior of the cell. More recently,

further studies carried out on irx4 suggested that lignifi-

cation was delayed during plant development (Patten et al.,

2005; Laskar et al., 2006). In addition to irx4, antisense

CCR lines and allelic ccr1 mutants have been obtained

(Goujon et al., 2003; Mir Derikvand et al., 2008). Analyses

of feruloyl derivatives in these lines suggested that feruloyl-

CoA, a substrate of CCR, was redirected to cell wall-bound
ferulate esters and soluble feruloyl malate. In addition, the

increased recovery of 1,2,2-trithioethyl ethylguaiacol from

thioacidolysis of CCR-deficient angiosperms (Arabidopsis,

poplar, tobacco) revealed increased incorporation of

free ferulic acid in lignins by bis-8-O-4 (cross) coupling

(Ralph et al., 2008).

In grasses, the role of CCR in controlling the flux of

phenylpropanoid metabolites to lignins has never been
demonstrated. cDNAs encoding CCR genes have been

identified in many monocot species including maize (Pichon

et al., 1998), sugarcane (Selman-Housein et al., 1999),

perennial ryegrass (McInnes et al., 2002; Tu et al., 2010),

rice (Bai et al., 2003; Kawasaki et al., 2006), barley

(Larsen, 2004), wheat (Ma and Tian, 2005; Ma, 2007), and

more recently, switchgrass (Escamilla-Trevino et al., 2010).

As is the case in dicots, all grass CCR proteins possess
two conserved functional domains: an NADPH binding

site and a CCR amino acid signature, NWYCY (Lacombe

et al., 1997). This NWYCY motif has recently been shown

to be essential for CCR activity in two switchgrass CCRs,

PvCCR1 and PvCCR2 (Escamilla-Trevino et al., 2010).

PvCCR1, which is involved in constitutive lignification,

prefers feruloyl-CoA as substrate, whereas PvCCR2 is more

related to defence and its preferred substrates are caffeoyl
and 4-coumaroyl-CoA. In wheat, two cDNAs, Ta-CCR2

and Ta-CCR1, have been characterized (Bai et al., 2003;

Ma and Tian, 2005; Kawasaki et al., 2006; Ma, 2007).

Both corresponding recombinant enzymes could use

feruloyl, 5-OH-feruloyl, sinapoyl, and caffeoyl-CoAs as

substrates; however, as in switchgrass, Ta-CCR1 used

feruloyl-CoA with the greatest efficiency (Ma and Tian,

2005).

In maize, two cDNAs, ZmCCR1 and ZmCCR2, have

been reported (Pichon et al., 1998). Whereas ZmCCR1 was
preferentially expressed in all lignifying tissues, ZmCCR2

was detected mainly in roots and it was shown to be

induced by drought conditions (Fan et al., 2006). A more

recent study identified six other maize contigs that were

annotated as putative CCRs (Guillaumie et al., 2007).

Expression data indicated that although all of them were

expressed in lignifying ear internodes, ZmCCR1 was the

most highly expressed. Therefore, in order to study the role
of CCR1 in the formation and digestibility of lignified cell

walls in maize, a maize CCR1 mutant, Zmccr1– has been

isolated and characterized. The characterization of Zmccr1–

revealed that despite only a slight decrease in lignin

content, there were significant changes in lignin structure.

Histochemical and immunocytochemical studies suggested

that these lignin alterations were tissue specific. Finally,

these modifications in lignin structure had a positive impact
on the digestibility of maize stems without provoking

any detrimental repercussions on plant growth and

development.

Materials and methods

Heterologous expression of ZmCCR1 in Escherichia coli and CCR

activity assay

The full-length ZmCCR1 cDNA was cloned in pT7-7 vector for
expression in BL21 E. coli. To facilitate cloning, an NdeI site
overlapping the ATG start codon (5’-CGTCGCCCATAT-
GACCGTCG-3’) and BamHI site (5’-GGGCGAATTG-
GATCCCGGGC-3’) were introduced by PCR. Recombinant
protein production was performed according to the protocol
described by Lacombe et al. (1997). CCR activity measurements
and Km determinations were performed as previously described by
Goffner et al. (1994).

Field experiments

Field experiments were carried out over 2 years in block designs
with two replicates. Row spacing was 0.75 m, and the density
was 90 000 plants ha–1. Whole-plant biomass, excluding the ears,
was collected at the silage stage and subjected to chemical and
digestibility assay after drying the samples in a ventilated oven
at 65 �C.

Isolation of Zmccr1–

One insertion event was isolated using a resource of 27 500
maize lines following the procedure described by Kärkönen
et al. (2005). Mutant screens were accomplished through a PCR-
based approach using a Mu-specific primer called OMuA: 5#-
CTTCGTCCATAATGGCAATTATCTC-3’ in combination with
CCR primers (forward1: 5#-GTCGCCAGGATGACC-3#, forward2:
5#-GTACATCGCCTCGTGGTTAG-3# reverse: 5#-GAGTTCTG-
CAAGAGAACGAG-3#) that are specific to ZmCCR1. Because of
the process used to make the maize mutant collection, each plant
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from the F2 generation for each family has a heterogeneous
genetic background. Therefore, to minimize phenotypic variation
between plants belonging to the same family, each mutant was
crossed with a standard elite line adapted to the European
climate. Thus, at each generation, there is a genetic segregation
for the mutant allele; therefore, the presence of a Mu insertion
was verified for each plant at each generation. After three
rounds of crosses, heterozygous mutants were self-pollinated and
analysed.

Lignin analysis

Ear internode and whole plants at silage stage were lyophilized at
harvest and ground to a fine powder. Lignin analyses were
performed on extract-free cell wall residue. Lignin content was
estimated by the Klason procedure (Whiting et al., 1981). Lignin
monomeric composition was determined by thioacidolysis fol-
lowed by GC-MS of lignin-derived monomer trimethylsilyl deriv-
atives (Lapierre et al., 1986). Determination of p-hydroxycinnamic
esters linked to lignin was performed by mild alkaline hydrolysis
according to Jacquet et al. (1995).

Digestibility measurements

Digestibility measurements were performed as previously described
in Pichon et al. (2006) on plants grown in field conditions at silage
stage. All parts of the plant except the ears were collected for
analysis.

Lignin histochemical staining

Transverse sections (100 lm) were made using a vibratome from
internodes of plants grown under field conditions at flowering
stage. Phloroglucinol staining was performed according to
standard protocols (Nakano, 1992). Sections were observed using
an inverted microscope (Leitz DMRIBE; Leica Microsystems,
Wetzlar, Germany). Images were registered using a CCD camera
(Color Coolview; Photonic Science, Milham, UK).

Quantitative analysis of vascular bundles

Ear internodes from plants collected at the flowering stage were
sectioned (100 lm) using a vibratome, stained with phloroglucinol,
and scanned (2400 dpi). The image was then calibrated: 20320 mm
corresponds to 188931889 pixels. The sizes of 122 and 110
vascular bundles located under the epidermis in the lignified
parenchyma zone were measured for wild type and Zmccr1–

mutant, respectively. The number of vascular bundle and their
surface area were determined with Image PRO-Plus software
(Media Cybernetics, Silver Spring, MD, USA).

Immunohistochemistry

Immunohistochemistry experiments were performed as described
in Chavez Montes et al. (2008) with some modifications. Samples
of maize tissues were fixed in 80% (v/v) ethanol. They were
dehydrated in two successive ethanol 100% and embedded in LR
White resin (Electron Microscopy Sciences; 33%, 50%, 66%, and
100% in ethanol). Primary antibodies against p-hydroxyphenylpro-
pane (H) epitopes were diluted 1:50 (v/v) (Joseleau and Ruel,
1997). The secondary antibody was a goat anti-rabbit IgG coupled
to the fluorescent dye Alexa Fluor 633 (Molecular Probes) and was
used at a 1:10 (v/v) dilution. For each experiment, two plants per
line (wild type and mutant) and two sections per plant were
observed.

RT-PCR analysis

RNA was extracted from piled-up internodes of 20-d-old
plants with RNeasy midi kit (Qiagen) and reverse transcribed
using MMLV (Promega enzyme). CCR1 gene expression was

monitored by RT-PCR using specific primers (forward
5#-TCCTCGCCAAGCTCTTCCCCGA-3# and reverse 5#-AAGA-
ACGAACATGACGTTACAAGTCTTAGG-3#) designed in the
3#UTR region. The amplification of GAPDH was performed
as a control (forward 5#-CCATGGAGAAGGCTGGGG-3# and
reverse 5#-CAAAGTCATGGATGACC-3#).

Affymetrix array hybridization

Hybridization experiments were performed as described in
Cossegal et al. (2008) with RNA extracted from piled-up
internodes of 20-d-old plants using RNeasy midi kit. All raw and
normalized data are available through the CATdb database
(AFFY_CCR_Maize) (Gagnot et al., 2008) and from the Gene
Expression Omnibus (GEO) repository at the National Center for
Biotechnology Information (NCBI) (Barrett et al., 2007): accession
number GSE 11531.

Results

Characterization of CCR1 gene structure and mutant
isolation in maize

This study focuses on ZmCCR1 since it was originally

shown that its expression was correlated with lignifying

tissues (Pichon et al., 1998). In this study, recombinant

CCR1 protein was produced in E. coli and was active

against all CCR substrates tested, with a slightly higher

affinity for p-coumaroyl-CoA (Km for p-coumaroyl-CoA:

2.8 lM, sinapoyl-CoA: 6.58 lM, feruloyl-CoA: 9.26 lM).
The availability of the maize genome sequence allowed us to

identify the complete genomic sequence for ZmCCR1. The

ZmCCR1 gene contains five exons and four introns

(Fig. 1A). In comparison with other grasses (rice, sorghum,

ryegrass, Brachypodium) and dicots (Arabidopsis, poplar),

the intron/exon positions of the ZmCCR1 gene are

well conserved (Supplementary Fig. S1 available at JXB

online).
To identify a CCR1 mutant, a Mu collection of 27 500

maize lines was screened using a PCR-based approach with

a Mu-specific primer that binds the terminal-inverted repeat

sequence of the Mu element together with specific CCR

primers. An insertional CCR1 mutant, Zmccr1–, was

identified. Sequence analysis of the flanking region sur-

rounding the Mu element indicated that the mutation

occurred in the first intron (Fig. 1A). To correlate Zmccr1–

phenotype with the Mu insertion, Zmccr1– was backcrossed

to an elite line devoid of active Mu element. The

mutation was tracked by PCR-based markers and, after five

backcrosses, selfing was performed in order to obtain

homozygous plants for a wild-type allele or the ccr1

mutation.

RT-PCR was performed to determine the effect of the

Mu insertion on CCR gene expression. CCR1 transcripts
were detectable in the Zmccr1– mutant but in lower

amounts compared with the wild type (Fig. 1B). Further

transcriptomic data allow us to estimate that CCR1 gene

expression in Zmccr1– was reduced to 31% of the residual

wild-type level.
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The Zmccr1– mutant displays normal growth and
development but modified lignin structure and cell wall
digestibility

At all developmental stages, field-grown Zmccr1– was

phenotypically indistinguishable from wild-type plants

(data not shown). The effect of CCR1 down-regulation on

lignin content and composition and cell wall digestibility
was determined in field-grown plants at the silage stage

(Table 1). The Zmccr1– mutation had very little effect on

lignin content. Whereas lignin content of the mutant and

wild-type ear-bearing internodes was similar, the whole-

plant biomass of Zmccr1– displayed a slight reduction in

lignin content (reduction by ;10%, Table 1). This slightly

reduced lignin level was associated with a significant in-

crease in cell wall digestibility. Lignin structure was then
investigated by thioacidolysis, in ear-bearing internodes and

whole-plant biomass (Table 1). The yield of thioacidolysis,

p-hydroxyphenyl (H), guaiacyl (G), syringyl (S) monomers,

reflects the frequency of lignin units involved in labile b-O-4

bonds. These monomers were released in similar amounts in

Zmccr1– and wild-type plants, suggesting that the overall

frequency of lignin units involved in labile b-O-4 bonds is

not affected by the mutation or, conversely, that the
frequency of resistant interunit bonds, referred to as the

lignin condensation degree, is similar in the mutant and

control samples. Whereas the lignin content is very little

affected in Zmccr1–, significant changes were observed in

the relative frequency of S, G, and H monomers. Down-

regulation of maize CCR1 resulted in an increase in the S/G

ratio of both the ear-bearing internodes and whole-plant

biomass (Table 1). Another striking difference concerned

the H lignin units. H units were released in lower amounts

from Zmccr1–compared with the wild-type plants. Accord-

ing to a recent study, the lignins of CCR-deficient poplar,

tobacco, and Arabidopsis contain higher amounts of

G-CHSEt-CH2(SEt)2, a compound that originates from the

increased incorporation of ferulic acid by bis-b-O-4 ethers

(Ralph et al., 2008). Concomitantly with the accumulation

of this ferulic acid-derived marker compound, cell walls of

CCR-deficient plants release higher amounts of ferulic acid

when subjected to thioacidolysis and/or to mild alkaline

hydrolysis (Chabannes et al., 2001; Leple et al., 2007; Mir

Derikvand et al., 2008). In contrast to these CCR-deficient

dicots, the Zmccr1– samples analysed in the present study

did not release higher amounts of ferulic acid or of the

G-CHSEt-CH2(SEt)2 marker compound when subjected to

thioacidolysis and as compared with the wild-type samples.

When subjected to alkaline hydrolysis, Zmccr1– cell walls

Fig. 1. ZmCCR1 gene structure and impact of the Mu mutation on CCR expression. (A) Exon and intron organization of the ZmCCR1

gene. Black boxes indicate exons and lines between boxes indicate introns. Insertion of the Mu element is indicated by an open

arrowhead. The references for ZmCCR1 are as follows: gene ID 542463 in NCBI, 199139 in Maize GDB, and GRMZM2G131205 in

maizesequence.org. (B) RT-PCR of CCR1 expression in piled-up internodes of 20-d-old wild-type and Zmccr1– plants.

Table 1. Impact of CCR1 down-regulation on lignin content and composition and cell wall digestibility at the silage stage

All values are the means from three wild-type and three mutant (Zmccr1–) plants. The lignin content is measured as Klason Lignin (KL) and
expressed as a weight percentage of the extract-free sample. Lignin structure is evaluated by determining the H, G, and S thioacidolysis
monomers. *Significant differences between wild-type and mutant parameters are indicated by Student t-test P<0.05. ND: not determined

Line KL (%) dNDF (%) Thioacidolysis
yield (mmol g�1 KL)

Relative frequency of
thioacidolysis monomers (%
molar)

S/G

H G S

Ear internode

Wild type 12.89 ND 1117 1.24* 39.9* 58.9* 1.48*

Zmccr1– 12.31 ND 1015 0.92* 37.6* 61.5* 1.64*

Whole-plant without ear

Wild type 13.04* 23.96* 660 2.27* 43.9* 53.4* 1.22*

Zmccr1– 11.46* 28.25* 620 1.23* 40.6* 57.8* 1.43*
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released similar amounts of ferulic and diferulic acids to the

wild-type samples (Supplementary Table S1 at JXB online).

Down-regulation of ZmCCR1 alters schlerenchymatic
fibre morphology and cell wall structure

Transverse sections were prepared from field-grown, ear-

bearing internodes at the flowering stage. Microscopic

observations were made from the upper and lower portions

of the internode, corresponding to the older and younger
zones of the internode, respectively (Fig. 2). In the upper

and lower portion of wild-type internodes stained with

phloroglucinol, xylem vessels, sclerenchyma cells surro-

unding vascular bundles and situated directly under the

epidermis stained red, confirming that all these cells are

lignified at both stages of development (Fig. 2A, C). In the

basal portion of Zmccr1– internodes, only the xylem stained

red (see arrow on Fig. 2D). The sclerenchyma cells
surrounding the vascular bundles were not only unstained

(Fig. 2D), but their shape appeared more oblong than the

equivalent wild-type cells (Fig. 2E, F). In the upper portion

of Zmccr1– internodes, all lignified cell types exhibited

a reddish-pink coloration, albeit less intense than in the

wild-type cells at the same stage (Fig. 2A, B).

Since biochemical data indicated a lower frequency of H

lignin units in Zmccr1–, their spatial distribution in immu-

nolocalization experiments was examined with a specific

H-unit antibody (Joseleau and Ruel, 1997). In the upper

portion of wild-type internodes, H units were detected in all
cell types (Fig. 3A). A close-up of sclerenchyma cells

surrounding the vascular bundles indicated that H units

were preferentially localized in the middle lamella and, more

precisely in the tricellular junctions (boxed-in area of

Fig. 3A) in agreement with a previous study (Joseleau and

Ruel, 1997). In the basal portion of wild-type internodes,

the walls of all cell types were also labelled, but H units

appeared to be more evenly distributed throughout the walls
(Fig. 3C). In Zmccr1–, very little labelling was observed in

Fig. 2. Histochemical staining of lignin in wild type (A, C, E) and Zmccr1– (B, D, F). Light micrographs of transverse sections stained with

phloroglucinol from the top (A, B) and bottom (C, D) parts of the ear-bearing internode. (E and F) Enlargement of sclerenchyma located

around vascular bundles. Black arrow in (D) indicates xylem vessels stained red with phloroglucinol. Bars: 500 lm (A–D), 50 lm (E, F). P,

parenchyma; S, sclerenchyma; E, epidermis; X, xylem vessels.
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the upper portion of the internode (Fig. 3B) and in the basal

portion, H units were located in all cell types (Fig. 3D).
However, in the basal portion, the label in sclerenchyma cells

was less intense than the wild type and unevenly distributed

within the wall (boxed-in area of Fig. 3D).

Another striking feature of Zmccr1– was the

difference in vascular bundle size as compared with the

wild type (Figs 2, 4). Although the overall spatial organiza-

tion of the different cell types within the bundle was

conserved Zmccr1– bundles were larger. In the wild-type
sample, the mean size of the vascular bundles ranged

between 20 000 and 60 000 lm2, whereas in Zmccr1– the

distribution of vascular bundle size was larger, ranging from

40 000 to 160 000 lm2 (Fig. 4). This difference was mainly

due to an increase in surface area of sclerenchyma cells

surrounding the bundle and not the xylem or phloem

themselves.

Transcriptomics analysis

To determine the influence of the CCR mutation on global

gene expression, transcriptome profiling was performed

on young piled-up internodes of 20-d-old Zmccr1– and

wild-type plants. A total of 167 genes were differentially
expressed between the two genotypes: 107 genes were

up-regulated and 60 were down-regulated (Supplementary

Table S2A, B at JXB online). A subset of the data relevant

to cell wall, phenylpropanoid metabolism, and transcription

factors are shown in Table 2.

Besides CCR1 itself, no other lignification genes were

down-regulated in Zmccr1–. As for cell wall modifying

enzymes, genes encoding a cellulase, a glucan endo-1,3-
b-glucosidase, and a glycosyltransferase 6 were also found

to be down-regulated in the mutant. In relation to

sclerenchyma formation, a katanin p80 gene was the second

most significantly reduced gene in Zmccr1– (Table 2). In

Arabidopsis, AtKN1 is essential for normal cortical micro-

tubule patterning (Burk et al., 2001). The corresponding

mutant, fragile fibre 2 (fra2), exhibits altered cellulose

microfibril deposition and cell wall biosynthesis in fibres
(Burk and Ye, 2002). Interestingly, another gene in relation

to cellulose microfibril deposition, a kinesin (corresponding

to the fra1 Arabidopsis mutant) (Zhong et al., 2002), was

also down-regulated in Zmccr1–. Elsewhere, it was noted

Fig. 3. Immunolocalization of H unit lignins in wild type (A, C) and Zmccr1– (B, D). Indirect immunofluorescence micrographs of resin-

embedded ear-bearing internode sections. Sections were performed in the top (A, B) and bottom (C, D) portions of internodes and

labelled with anti-H antibodies. White boxes in A, C, D: enlargement of sclerenchyma cells. Anti-H label is indicated in red. P,

parenchyma; S, sclerenchyma; X, xylem vessels. Bar: 50 lm (A-D).
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that the most down-regulated gene in the complete data set

codes for an extracellular matrix structural constituent

(Supplementary Table S2A at JXB online).
Among the up-regulated genes in Zmccr1–, six structural

proteins including five proline-rich proteins and a hydrox-

yproline-rich protein were identified (Table 2). In addition,

genes involved in flavonoid metabolism, such as flavonoid

3’-hydroxylase, two dihydroflavonol-4-reductases, and an

anthocyanidin 3-O-glucosyltransferase, were also up-regu-

lated. Another striking feature of Zmccr1– gene expression

is the up-regulation of seven members of the MADS-box
transcription factor family. These transcription factors

have been studied mainly in the context of floral develop-

ment (Hernandez-Hernandez et al., 2007). Although a link

between the MADS-box transcription factors and CCR

down-regulation is difficult to establish, Liljegren et al.

(2000) reported a role for a MADS-box transcription factor

in the lignification of the Arabidopsis silique that would

enable dehiscence.

Discussion

ZmCCR1 plays a role in dictating lignin structure in
maize

A major conclusion of previous studies on dicot species was

that strong down-regulation of the CCR gene dramatically

affects lignin content. For example, in irx4 (Jones et al.,
2001) and the knock-out CCR1 Arabidopsis mutant

(Mir Derikvand et al., 2008), the lignin content of mature

floral stems was reduced to ;50% of the wild-type level.

Concomitantly, feruloyl-CoA, which is a substrate of CCR

in dicots, was redirected either to ferulic acid ester-linked to

the cell walls or incorporated into lignins, or, in the case of

Arabidopsis, to soluble feruloyl malate (Mir Derikvand

et al., 2008; Ralph et al., 2008). In maize, the Mu insertion

in the first intron of the CCR gene led to a slight decrease in

CCR expression. As a consequence, the lignin content was

slightly affected and the pool of ferulic acid was not altered.

A small decrease in lignin content has also been reported in

transgenic Norway spruce expressing the CCR gene in
antisense orientation. In that case, the transcript abundance

of CCR was reduced by 35% (Wadenback et al., 2008). The

most important effect observed in the internodes of the

Zmccr1– mutant was an increase in the S/G ratio as well as

a decrease in H lignin units. Moreover, the use of an H unit

antibody revealed changes in both the amount and the

distribution of H units in the ear internode. Radiotracer

experiments performed in grass and non-grass species have
revealed that lignins deposited in the middle lamella and at

the early stage of lignification are enriched in H units

(Terashima, 1993). In addition, these H units are more

abundant in the lignins of compression wood (Bailleres

et al., 1997) and in the stress lignins formed in response to

a fungal elicitor (Lange et al., 1995) or to ozone exposure

(Cabane et al., 2004). In transgenic Norway spruce dis-

playing moderate CCR down-regulation, a significant
decrease in the minor H units has been reported

(Wadenback et al., 2008). A similar reduction in H lignin

has been reported in Arabidopsis (Goujon et al., 2003)

and alfalfa (Nakashima et al., 2008a) antisense CCR

plants. Interestingly, in all plant species (gymnosperms,

angiosperms, dicots, and monocots) and for all degrees

of down-regulation (moderate or severe), CCR down-

regulation systematically reduces the frequency of H lignin
units, which are more specific to the early lignification

stage or stress lignins. By contrast, the down-regulation of

p-coumaroyl ester 3-hydroxylase (C3H) in Arabidopsis led

to lignin essentially comprised of H units (Abdulrazzak

et al., 2006). In a similar manner, down-regulation of C3H

in alfalfa (Ralph et al., 2006) and in poplar (Coleman et al.,

2008) led to an increased proportion of H units. Thus, it

seems that CCR1 and C3H have opposing roles in establish-
ing H unit content in plant lignins. In maize, it was

demonstrated that although CCR1 recombinant protein

uses all the CCR substrates tested, its preferred substrate is

p-coumaroyl-CoA. This result is quite different from those

obtained in switchgrass (Escamilla-Trevino et al., 2010) and

rice (Ma and Tian, 2005; Ma, 2007) in which CCR1

exhibited a higher affinity for feruloyl-CoA. This difference

could be related to the fact that these grass species belong to
divergent clades (Supplementary Fig. S2 at JXB online).

Taken together these results suggest that CCR1 plays a role

in regulating lignin monomeric composition in maize and,

more particularly, the formation of the minor H lignin

units. Albeit occurring in relatively minor amounts (<5% of

the lignin units, except in compression wood), these H units

may have a locally higher concentration and a pivotal role

in modulating plant cell wall properties, particularly in the
middle lamella region. In vascular and supporting tissues,

this cell wall region has high lignin content and contains

Fig. 4. Distribution of vascular bundle surface area in internodes

of wild type and Zmccr1–. Vascular bundle size was measured

from 100 lm sections from the basal portion of the ear-bearing

internode. Sections were stained with phloroglucinol reagent and

scanned. Using Image Pro software each vascular bundle located

in the external zone of the internode was numerized for counting.

A total of 122 and 110 vascular bundles for wild type and Zmccr1–

mutant respectively were counted. Black and grey bars on the

histogram represent, respectively, wild-type and Zmccr1– vascular

bundle sizes.
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lignins that are rich both in H units and in condensed

bonds, which probably favours their cementing function.

The fact that CCR1 down-regulation specifically affects the

formation of the minor H lignin units in all plant

species might suggest that this down-regulation is more

effective during the early stages of lignification. Another

hypothesis would be that the formation of H lignins would

proceed by different mechanisms than the formation of
G or S constitutive lignins. In agreement with the fact

that stress lignins are often enriched in H units (Lange

et al., 1995), one can imagine that, due to its higher redox

potential and as compared with coniferyl or sinapyl alcohol,

the effective incorporation of p-coumaryl alcohol into the

lignin polymers requires harsher oxidative conditions,

such as those occurring during plant defence and in

the presence of high concentrations of reactive oxygen

species. In non-stress conditions, the baseline level of these

reactive oxygen species would allow the incorporation of

some H units whereas stress conditions would increase this

incorporation. To further support the relationship of grass
CCR1 to stress lignins, recent work has revealed that

rice CCR1 is an effector of the small GTPase Rac acting in

plant defence (Kawasaki et al., 2006; Nakashima et al.,

2008b).

Table 2. Differential expression of genes involved in cell wall and phenylpropanoid metabolism and transcription factors between

Zmccr1– and wild-type plants

Experiments were performed with RNA extracted from 20-d-old plants.

Gene Accession No. Log2 ratio Bonferroni

Cell wall and phenylpropanoid metabolism

Down-regulated genes in Zmccr1–

Extracellular matrix structural constituent. gb|CF647864 –8.18 0.00E+0

Katanin p80 (fra2) gb|BG873873 –4.53 0.00E+0

Cinnamoyl-CoA reductase 1 gb|CF632382 –1.69 0.00E+0

Actin-related protein 7 gb|AY107222.1 –1.23 2.54E–7

Cellulase 1 gb|AY108307.1 –1.14 7.33E–6

Glucan endo-1,3-b-glucosidase-related gb|CO522465 –1.00 7.83E–4

Glycosyltransferase 6 gb|AI665306 –1.00 7.29E–4

Kinesin (fra1) gb|BM380170 –0.88 2.04E–2

Up-regulated genes in Zmccr1–

Pectinesterase gb|AY112091.1 7.55 0.00E+00

Proline-rich protein APG precursor gb|AW573375 6.5 0.00E+00

Flavonoid 3’-hydroxylase gb|BG873885 2.13 0.00E+00

Polygalacturonase inhibitor 1 gb|CK371299 1.82 0.00E+00

Dihydroflavonol-4-reductase gb|CK827965 1.81 0.00E+00

Dihydroflavonol-4-reductase gb|CO523092 1.76 0.00E+00

Hydroxyproline-rich glycoprotein gb|BM350630 1.72 0.00E+00

UDP-glucose 4-epimerase gb|AY303682.1 1.31 1.08E–08

Proline-rich protein gb|BM380341 1.3 2.16E–08

Chorismate mutase gb|AI673851 1.23 2.29E–07

Anthocyanidin 3-O-glucosyltransferase gb|CO525742 1.21 5.80E–07

Proline-rich protein APG precursor gb|CO532055 1.17 2.41E–06

Peroxidase 27 gb|CK144844 1.08 5.35E–05

Pectinesterase gb|CF629045 1.05 1.26E–04

Proline-rich protein APG gb|BM382516 0.95 3.30E–03

Cell wall protein gb|M36914.1 0.85 4.97E–02

Transcription factors

Down-regulated genes in Zmccr1–

AtMYB59 gb|BU571552 –0.98 1.37E–3

bZIP transcription factor HBP-1b gb|X69152.1 –0.89 1.99E–2

Transcription factor HBP-1b gb|X69152.1 –0.86 4.14E–2

Up-regulated genes in Zmccr1–

CHY zinc finger family protein gb|BQ538104 4.86 0.00E+00

MADS-box transcription factor 4 gb|AW055920 3.43 0.00E+00

MADS-box transcription factor 16 gb|AF181479.1 3.06 0.00E+00

MADS-box transcription factor 2 gb|BM078498 2.99 0.00E+00

MADS-domain transcription factor gb|CF649598 2.8 0.00E+00

MADS-box transcription factor 8 gb|BQ703314 1.99 0.00E+00

Zinc finger (HIT type) family gb|BU571579 1.49 6.98E–12

MADS-box transcription factor 34 gb|AI691625 0.94 4.30E–03

MADS-box transcription factor 15 gb|AF112150.1 0.86 4.26E–02
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Down-regulation of CCR1 altered lignin structure in
a cell type-specific manner

In the younger portion of Zmccr1– internodes, the cell walls

of sclerenchyma cells surrounding the vascular bundles were

poorly stained with phloroglucinol and H units were not

uniformly distributed within the wall. Since total lignin

content was only affected slightly in Zmccr1–, the absence
of phloroglucinol staining was somewhat surprising.

Interestingly, in the maize brittle stalk-2 mutant in which

cellulose deposition was modified, sclerenchyma cells did

not react with phloroglucinol stain despite higher amounts

of lignin and hydroxycinnamic acids in internodes (Sindhu

et al., 2007). In the case of Zmccr1–, one explanation could

be that lignification is delayed in the sclerenchyma cells.

This hypothesis is supported by the fact that the upper
(older) portion of the internode reacted positively to

phloroglucinol staining. A delay in lignification and de-

velopment has been reported for the CCR Arabidopsis

mutant, irx4 (Laskar et al., 2006). Moreover, the scleren-

chyma cell shape in the basal portion of the ear internode

appeared more oblong in Zmccr1– as compared with the

wild type. Modifications in cell shape have been previously

reported in CCR-down-regulated alfalfa (Nakashima et al.,
2008a). In contrast, xylem vessels of Zmccr1– were not

affected by the CCR mutation. The observation that xylem

vessels are stained red with phloroglucinol and are correctly

formed in Zmccr1– is quite different from that described in

other CCR down-regulated angiosperm species displaying

a collapsed xylem phenotype (Jones et al., 2001; Mir

Derikvand et al., 2008). To date the only xylem-deficient

mutant in maize that has been described is the wilted
mutant (Postlethwait and Nelson, 1957). In this mutant,

some of the vascular bundles are characterized by imma-

ture, non-functional metaxylem elements.

Transcriptomics in Zmccr1– revealed cross-talk in
phenypropanoid metabolism and cellulose deposition in
cell wall

Transcriptomic analysis of 20-d-old plants revealed that,

except for the down-regulation of CCR1, no other genes

involved in the lignification pathway were deregulated. On

the contrary, up-regulation of several flavonoid biosynthetic

genes including a chorismate mutase, two dihydroflavonol
reductases (DFR), and a flavonoid 3’-hydroxylase (F3H)

was observed. Chorismate mutase and DFR were also

differentially expressed in CCR-down-regulated tobacco

(Dauwe et al., 2007). Interestingly, DFR and F3H were

also up-regulated in C3H-down-regulated Arabidopsis. As

CCR1, the HCT/C3H couple uses coumaroyl-CoA as

substrate. When one of these enzymes is disrupted, the pool

of coumaroyl-CoA, which serves usually for the synthesis of
H unit at the early stage of plant development, is probably

redirected towards the flavonoid pathway as indicated

by the up-regulation of both DFR and F3H. Zmccr1–

transcriptomic data also indicated deregulation of two

genes involved in cellulose microfibril deposition, kinesin

and katanin. The corresponding Arabidopsis mutants, fra1

and fra2 respectively, exhibited defects in cell wall for-

mation specifically in sclerenchyma cells (Burk and Ye,

2002; Zhong et al., 2002). More recently, Zhang et al. (2010)

reported that alteration in a kinesin-4 gene in rice led to

modification of sclerenchyma cell wall structure and prop-

erties including randomly oriented cellulose microfibrils and

an increase in lignin and arabinoxylan content. Thus, the
deregulation of genes involved in cellulose microfibril

deposition, together with the observed modification of H

unit distribution in sclerenchyma cell walls suggests that the

cellulose–lignin network may be altered in Zmccr1–.

Moderate down-regulation of CCR1 significantly
improved cell wall digestibility in maize

To the present authors’ knowledge, this is the first report

that the down-regulation of a gene in the lignin biosynthetic

pathway led to a significant increase in cell wall digestibility

without severely modifying lignin content. In keeping with

the improved digestibility in Zmccr1–, the CCR1 gene in

maize is located on chromosome 1 and co-localizes with

a quantitative trait locus (QTL) of cell wall digestibility

explaining 12.1% of this trait in F838XF286 RIL progeny
(Barriere et al., 2008). Co-localization between herbage

quality and CCR1 has also been reported in perennial

ryegrass (Cogan et al., 2005). Thumma et al. (2005) also

reported that CCR polymorphism was associated with

variation in microfibril angle in eucalyptus. Recently,

a single non-coding two-state marker in CCR1 has been

found in poplar (Wegrzyn et al., 2010).

In Zmccr1–, biochemical data indicated that lignin
content (10% lower than wild-type plants) and structure

(lower H unit content) were significantly modified. These

modifications are associated with significantly improved

polysaccharide cell wall degradability [digestibility of

neutral detergent fibre (dNDF) increase from 24% to 28%].

In agreement with biochemical data, cytological observa-

tions indicated specific changes in sclerenchyma cell walls

including greatly reduced phloroglucinol staining and
modification of H distribution within the wall. Even if H

units are in low proportion in cell wall, they are the first to

be incorporated during plant development and may

subsequently modify the establishment of the lignin–

polysaccharide network. The next step is to determine the

precise nature of the changes in sclerenchyma wall chemis-

try and to establish how these changes have a beneficial

impact on plant biomass properties.
Finally, Zmccr1– mutant is of particular interest for

breeders because the increase in digestibility is not associ-

ated with undesirable agronomics traits when plants are

grown in field conditions.
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